Refine Your Search

Topic

Author

Search Results

Journal Article

Optimizing Engine Oils for Fuel Economy with Advanced Test Methods

2017-10-08
2017-01-2348
Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

On-Board Sensor Systems to Diagnose Condition of Diesel Engine Lubricants - Focus on Soot

2004-10-25
2004-01-3010
Soot is a typical byproduct of the diesel fuel combustion process, and a portion of the soot inevitably enters an engine's crankcase. A key functionality of a diesel engine lubricant is to disperse and suspend soot so that larger-particle agglomerations are prevented. The role of soot agglomeration in abrasive engine wear and lubricant viscosity increase is the subject of a continuing investigation; however, what is generally known is that once an engine lubricant loses its ability to control soot and a rapid viscosity increase begins, the lubricant has reached the end of its useful life and should be changed to maximize engine performance and life. This issue of soot related viscosity increase is of such importance that the Mack T-11 engine test was developed as a laboratory tool to evaluate lubricants. The newly proposed Mack EO-N Premium Plus - 03 specification includes a T-11 performance requirement.
Technical Paper

Mechanical Degradation of Viscosity Modifiers in Heavy Duty Diesel Engine Lubricants in Field Service

2003-10-27
2003-01-3223
Modern multi-grade engine lubricants are formulated to “stay in grade” during field service. Viscosity loss during the early stages of lubricant life is commonly believed to be caused by mechanical degradation of the viscosity modifier in the engine [1]. The Kurt Orbahn shear stability bench test (ASTM D 6278, 30 cycles) has been the industry standard predictor of viscosity loss due to polymer shear in heavy duty diesel engine lubricants. However, the Engine Manufacturers' Association (EMA) has expressed some concern that it underestimates the degree of polymer shear found in certain engines in the field, such as the Navistar 6.0L HEUI (Hydraulic Electronic Unit Injector) Power Stroke engine; a more severe bench test would serve to improve correlation with this and other similar engine designs. This paper offers a new approach for critically examining the relationship between the bench test and field performance.
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Lubricant Requirements of an Advanced Designed High Performance, Fuel Efficient Low Emissions V-6 Engine

2001-05-07
2001-01-1899
Modern high power density gasoline fueled engines place an ever-increasing demand on the engine lubricant. In this study, it is shown that advances in engine design to increase performance, improve fuel economy and lower emissions have outpaced the development of typical commercial engine lubricants. Advanced designed engines began to experience oil starvation as a result of a combination of driving cycles, oil quality and poor maintenance practices. The cause was traced to excessive increases in borderline pumping viscosity as measured by MRV TP-1 (ASTM D4684). Used oil analysis for MRV TP-1 showed viscosity greatly increased in excess of stay-in-grade requirements and in many cases the crankcase lubricant was solid at the temperature appropriate for its viscosity grade. However, at the same time CCS values were in grade or only slightly (1W grade) elevated.
Technical Paper

Low Speed Pre-Ignition (LSPI) Durability – A Study of LSPI in Fresh and Aged Engine Oils

2018-04-03
2018-01-0934
Downsized gasoline engines, coupled with gasoline direct injection (GDI) and turbocharging, have provided an effective means to meet both emissions standards and customers’ drivability expectations. As a result, these engines have become more and more common in the passenger vehicle marketplace over the past 10 years. To maximize fuel economy, these engines are commonly calibrated to operate at low speeds and high engine loads – well into the traditional ‘knock-limited’ region. Advanced engine controls and GDI have effectively suppressed knock and allowed the engines to operate in this high efficiency region more often than was historically possible. Unfortunately, many of these downsized, boosted engines have experienced a different type of uncontrolled combustion. This combustion occurs when the engine is operating under high load and low speed conditions and has been named Low Speed Pre-Ignition (LSPI). LSPI has shown to be very damaging to engine hardware.
Technical Paper

Jet Fuel Thermal Stability Additives - Electrical Conductivity and Interactions with Static Dissipator Additive

2002-05-06
2002-01-1652
The primary goal of the USAF JP-8+100 thermal stability additive (TSA) program is to increase the heat-sink capacity of JP-8 fuel by 50%. Current engine design is limited by a fuel nozzle temperature of 325°F (163°C); JP-8+100 has been designed to allow a 100°F increase in nozzle temperatures up to 425°F (218°C) without serious fuel degradation leading to excessive deposition. Previous studies have shown that TSA formulations increase the electrical conductivity of base jet fuel. In the present paper, further characterization of this phenomenon is described, as well as interactions of newer TSAs with combinations of SDA and other surface-active species in hydrocarbons, will be discussed.
Technical Paper

Jet Fuel Thermal Stability - Lab Testing for JP8+100

2002-05-06
2002-01-1651
The continued development of more powerful aviation turbine engines has demanded greater thermal stability of the fuel as a high temperature heat sink. This in turn requires better definition of the thermal stability of jet fuels. Thermal stability refers to the deposit-forming tendency of the fuel. It is generally accepted that dissolved oxygen initiates the deposition process in freshly refined fuels. While there are many tests that are designed to measure or assess thermal stability, many of these either do not display sufficient differentiation between fuels of average stability (JP-8) and intermediate stability (JP-8+100, JP-TS), or require large test equipment, large volumes of fuels and/or are costly. This paper will discuss the use of three laboratory tests as “concept thermal stability prediction” tools with aviation fuels, including Jet A-1 or JP-8, under JP8+100 test conditions.
Technical Paper

Jet Fuel Low Temperature Operability

2002-05-06
2002-01-1650
Jet-A and Jet-A-1 have fueled commercial and military jets for decades. With -40°C and -47°C freeze point specifications respectively, Jet-A and Jet-A-1 have adequate low temperature operability for the current demands of jet-powered planes. However next generation military and commercial jet aircraft will need fuels with improved low temperature performance to reap the benefits of flying higher, longer and taking polar routes. The extreme cold these new routes will expose jet fuel to makes it necessary to have fuel that flows at much lower temperatures than is currently available. Changing the jet fuel refining conditions can achieve the desired low temperature characteristics however this is very expensive.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

Improved Friction Modifiers to Aid in Future Fuel Economy Targets

2007-10-29
2007-01-4134
Requirements to improve vehicle fuel economy continue to increase, spurred on by agreements such as the Kyoto Protocol. Lubricants can play a role in aiding fuel economy, as evidenced by the rise in the number of engine oil specifications that require fuel economy improvements. Part of this improvement is due to achieving suitable viscometric properties in the lubricant, but additional improvements can be made using friction modifier (FM) compounds. The use of FMs in lubricants is not new, with traditional approaches being oleochemical-based derivatives such as glycerol mono-oleate and molybdenum-based compounds. However, to achieve even greater improvements, new new friction modifying compounds are needed to help deliver the full potential required from next generation lubricants. This work looks at the potential improvements available from new FM technology over and above the traditional FM compounds.
Journal Article

Impact of Viscosity Modifiers on Gear Oil Efficiency and Durability: Part II

2013-04-08
2013-01-0299
This paper outlines the second part in a series on the effect of polymeric additives commonly known as viscosity modifiers (VM) or viscosity index improvers (VII) on gear oil efficiency and durability. The main role of the VM is to improve cold temperature lubrication and reduce the rate of viscosity reduction as the gear oil warms to operating temperature. However, in addition to improved operating efficiency across a broad temperature range compared to monograde fluids the VM can impart a number of other significant rheological improvements to the fluid [1]. This paper expands on the first paper in the series [2], covering further aspects in fluid efficiency, the effect of VM chemistry on these and their relationship to differences in hypoid and spur gear rig efficiency testing. Numerous VM chemistry types are available and the VM chemistry and shear stability is key to fluid efficiency and durability.
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Technical Paper

Identifying the limitations of the Hot Tube test as a predictor of lubricant performance in small engine applications

2020-01-24
2019-32-0510
The Hot Tube Test is a bench test commonly used by OEMs, Oil Marketers and Lubricant Additive manufacturers within the Small Engines industry. The test uses a glass tube heated in an aluminum block to gauge the degree of lacquer formation when a lubricant is subjected to high temperatures. This test was first published by engineers at Komatsu Ltd. (hence KHT) in 1984 to predict lubricant effects on diesel engine scuffing in response to a field issue where bulldozers were suffering from piston scuffing failures [1]. Nearly 35 years after its development the KHT is still widely used to screen lubricant performance in motorcycle, power tool and recreational marine applications as a predictor of high-temperature piston cleanliness - a far cry from the original intended performance predictor of the test. In this paper we set out to highlight the shortcomings of the KHT as well as to identify areas where it may still be a useful screening tool as it pertains to motorcycle applications.
Technical Paper

How Polymer Architecture Affects Permanent Viscosity Loss of Multigrade Lubricants

1998-10-19
982638
Multigrade automotive lubricants contain polymeric viscosity modifiers which enable the oil to provide adequate hydrodynamic lubrication at high temperatures and good starting/pumping performance at low temperatures. Under operating conditions in engines, transmissions and gear boxes, polymeric additives undergo both temporary and permanent viscosity loss. The former is caused by flow orientation and the latter by molecular chain scission. Whatever the mechanism, original equipment manufacturers are interested in maintaining a minimum level of hydrodynamic viscosity from oil change to oil change. This is often expressed as a “stay-in-grade” requirement. Commercial viscosity modifiers (VM) span a wide range of chemistries and molecular architectures.
Technical Paper

Heavy Duty Engine Lubricants for a Global Market: Formulating a Global Additive Technology

2000-06-19
2000-01-1984
Regulations reducing emissions worldwide are the driving force behind the trend to converging diesel engine design strategies among manufacturers. This results in common engine lubricant performance and the need for a global performance platform for diesel engine lubricants (1, 2). This paper chronicles a multi-year project that defined a diesel engine lubricant platform to meet global Original Equipment Manufacturer (OEM) requirements. The design of the additive chemistry required to achieve the platform targets is described. Demonstration of the performance capabilities of the new technology in engine tests that constitute international specifications and field testing is also discussed. The results suggest that formulating a heavy duty diesel engine oil to meet a variety of worldwide lubricant requirements results in a more robust formulation, outperforming oils designed to meet only regional requirements.
Technical Paper

Fuel Sulfur Effects on Diesel Engine Lubrication

1990-10-01
902175
The Environmental Protection Agency will require a reduction in U.S. diesel particulate standards in 1991. To comply with this, the OEM's must modify engine design and ask petroleum refiners to reduce fuel sulfur levels to less than 0.05%. This reduction could have a dramatic impact on an engine's lubricant and possibly its performance. The durability and particulate emission stability of new engines designed to use low sulfur fuel should be related to lubricant performance and protection. Performance with low sulfur fuel must also be acceptable with equipment in service today. Laboratory evaluations of lubricant performance in current equipment were conducted with the Caterpillar 1G2 and various multicylinder diesel tests used for API CE certification. Performance differences attributable to both fuel sulfur and lubricant formulation variations have been identified and will be discussed.
Technical Paper

Field Experience with Selected Lubricants for Commercial Vehicle Manual Transmissions

2005-05-11
2005-01-2176
Laboratory testing is an essential part of product development. However, it usually only reflects a small portion of the experience that a lubricant may see in actual service conditions. Many laboratory tests are designed to only address one or two facets of what is deemed to be critical performance areas. Since it is difficult to cover all of the critical performance conditions problems sometimes arise in service that were not anticipated by the laboratory test. Or, conversely, some above average performance evolves during service that was not observed in a specific laboratory test. This paper highlights the overall performance of four manual transmission fluids approved or accepted by the manufacturer for this application. The evaluations were conducted in a city bus fleet with the test buses assigned to the same route for approximately 300,000 km over 30 months.
Technical Paper

Extending Injector Life in Methanol-Fueled DDC Engines Through Engine Oil and Fuel Additives

1990-10-01
902227
Considerable development effort has shown that conventional diesel engine lubricating oil specifications do not define the needs for acceptable injector life in methanol-fueled, two-stroke cycle diesel engines. A cooperative program was undertaken to formulate an engine oil-fuel additive system which was aimed at improving performance with methanol fueling. The performance feature of greatest concern was injector tip plugging. A Taguchi matrix using a 100 hour engine test was designed around an engine oil formulation which had performed well in a 500 hour engine test using a simulated urban bus cycle. Parameters investigated included: detergent level and type, dispersant choice, and zinc dithiophosphate level. In addition, the influence of a supplemental fuel additive was assessed. Analysis of the Taguchi Matrix data shows the fuel additive to have the most dramatic beneficial influence on maintaining injector performance.
X